Evolving a Fuzzy Rule-Base for Image Segmentation
نویسنده
چکیده
A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live together in colonies. We use comprehensive learning particle swarm optimization (CLPSO) technique to find optimal fuzzy rules and membership functions because it discourages premature convergence. Here each particle of the swarm codes a set of fuzzy rules. During evolution, a population member tries to maximize a fitness criterion which is here high classification rate and small number of rules. Finally, particle with the highest fitness value is selected as the best set of fuzzy rules for image segmentation. Our results, using this method for soccer field image segmentation in Robocop contests shows 89% performance. Less computational load is needed when using this method compared with other methods like ANFIS, because it generates a smaller number of fuzzy rules. Large train dataset and its variety, makes the proposed method invariant to illumination noise Keywords—Comprehensive learning Particle Swarm optimization, fuzzy classification.
منابع مشابه
Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملIntelligent Medical Image Segmentation Using Evolving Fuzzy Sets
Image segmentation is an important step in the image analysis process. Current image segmentation techniques, however, require that the user tune several parameters in order to obtain maximum segmentation accuracy, a computationally inefficient approach, especially when a large number of images must be processed sequentially in real time. Another major challenge, particularly with medical image...
متن کاملOn fuzzy rule-based algorithms for image segmentation using gray-level histogram analysis
One of the biggest problems in computer vision systems, analyzing images having high uncertainty/vagueness degree, is the treatment of such uncertainty. This problem is even clearest in the segmentation process. Fuzzy set theory and fuzzy logic are ideally suited for dealing with such uncertainty. This work extends our earlier and on-going work in automated image labeled segmentation, modeled f...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملFuzzy Logic Based Gray Image Extraction and Segmentation
Image segmentation and subsequent extraction from a noise-affected background, has all along remained a challenging task in the field of image processing. There are various methods reported in the literature to this effect. These methods inc lude various Artificial Neural Network (ANN) models (primarily supervised in nature), Genetic Algorithm (GA) based techniques, intensity histogram based me...
متن کامل